34 resultados para Intelligent Control

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a loop-shaping approach to in telligent control with dynamically constructed neurocon troller. In the proposed control scheme, the process uncer tainly is reduced in the controller rather than in the process, without explicit identification of the process under control. The inherent noise/distrurbances in the process are utilized to satisfy persistency of excitation condition. The use of a reference model in form of a filter allow the frequency response of the closed-loop to be adapted in line with the changes in frequency response of the filter. The approach is evaluated on the example of control of polymerization reactor with promising results.


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review of the state of knowledge in the field of control and energy management in HEVs is carried out. The key innovation of the project is the development of a model of a PHEV using the real road data with an intelligent look-ahead online controller. Another novelty of this work is the method of route planning. It combines the information of vehicle sensors such as accelerometer and speedometer with the data of a GPS to create a road grade map for use within the look-ahead energy management strategy in the vehicle. For the PHEV, an adaptive cruise controller is modelled and an optimisation method is applied to obtain the best speed profile during a trajectory. Finally, the nonlinear model of the vehicle is applied with the sliding mode controller. The effect of using this controller is compared with the universal cruise controller. The stability of the system is studied and proved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis provides a unified and comprehensive treatment of the fuzzy neural networks as the intelligent controllers. This work has been motivated by a need to develop the solid control methodologies capable of coping with the complexity, the nonlinearity, the interactions, and the time variance of the processes under control. In addition, the dynamic behavior of such processes is strongly influenced by the disturbances and the noise, and such processes are characterized by a large degree of uncertainty. Therefore, it is important to integrate an intelligent component to increase the control system ability to extract the functional relationships from the process and to change such relationships to improve the control precision, that is, to display the learning and the reasoning abilities. The objective of this thesis was to develop a self-organizing learning controller for above processes by using a combination of the fuzzy logic and the neural networks. An on-line, direct fuzzy neural controller using the process input-output measurement data and the reference model with both structural and parameter tuning has been developed to fulfill the above objective. A number of practical issues were considered. This includes the dynamic construction of the controller in order to alleviate the bias/variance dilemma, the universal approximation property, and the requirements of the locality and the linearity in the parameters. Several important issues in the intelligent control were also considered such as the overall control scheme, the requirement of the persistency of excitation and the bounded learning rates of the controller for the overall closed loop stability. Other important issues considered in this thesis include the dependence of the generalization ability and the optimization methods on the data distribution, and the requirements for the on-line learning and the feedback structure of the controller. Fuzzy inference specific issues such as the influence of the choice of the defuzzification method, T-norm operator and the membership function on the overall performance of the controller were also discussed. In addition, the e-completeness requirement and the use of the fuzzy similarity measure were also investigated. Main emphasis of the thesis has been on the applications to the real-world problems such as the industrial process control. The applicability of the proposed method has been demonstrated through the empirical studies on several real-world control problems of industrial complexity. This includes the temperature and the number-average molecular weight control in the continuous stirred tank polymerization reactor, and the torsional vibration, the eccentricity, the hardness and the thickness control in the cold rolling mills. Compared to the traditional linear controllers and the dynamically constructed neural network, the proposed fuzzy neural controller shows the highest promise as an effective approach to such nonlinear multi-variable control problems with the strong influence of the disturbances and the noise on the dynamic process behavior. In addition, the applicability of the proposed method beyond the strictly control area has also been investigated, in particular to the data mining and the knowledge elicitation. When compared to the decision tree method and the pruned neural network method for the data mining, the proposed fuzzy neural network is able to achieve a comparable accuracy with a more compact set of rules. In addition, the performance of the proposed fuzzy neural network is much better for the classes with the low occurrences in the data set compared to the decision tree method. Thus, the proposed fuzzy neural network may be very useful in situations where the important information is contained in a small fraction of the available data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cruise control in motor vehicles enhances safe and efficient driving by maintaining a constant speed at a preset level. Adaptive Cruise Control (ACC) is the latest development in cruise control. It controls engine throttle position and braking to maintain a safe distance behind a vehicle in front by responding to the speed of this vehicle, thus providing a safer and more relaxing driving environment. ACC can be further developed by including the look-ahead method of predicting environmental factors such as wind speed and road slope. The conventional analytical control methods for adaptive cruise control can generate good results; however they are difficult to design and computationally expensive. In order to achieve a robust, less computationally expensive, and at the same time more natural human-like speed control, intelligent control techniques can be used. This paper presents an Adaptive Neuro-Fuzzy Inference System (ANFIS) based on ACC systems that reduces the energy consumption of the vehicle and improves its efficiency. The Adaptive Cruise Control Look-Ahead (ACC-LA) system works as follows: It calculates the energy consumption of the vehicle under combined dynamic loads like wind drag, slope, kinetic energy and rolling friction using road data, and it includes a look-ahead strategy to predict the future road slope. The cruise control system adaptively controls the vehicle speed based on the preset speed and the predicted future slope information. By using the ANFIS method, the ACC-LA is made adaptive under different road conditions (slope angle and wind direction and speed). The vehicle was tested using the adaptive cruise control look-ahead energy management system, the results compared with the vehicle running the same test but without the adaptive cruise control look-ahead energy management system. The evaluation outcome indicates that the vehicle speed was efficiently controlled through the look-ahead methodology based upon the driving cycle, and that the average fuel consumption was reduced by 3%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a new approach to separate colored signals mixed by FIR (finite impulse response) and MIMO (multiple-input multiple-output) channels. A cost function is proposed by employing linear constrainit to the de mixing vectors. The linear constraint is shown to be sufficient for avoiding trivial solution. The minimization of the cost function is performed using the Lagrangian method. Simulation results demonstrate the performance of the algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Selecting a set of features which is optimal for a given task is the problem which plays an important role in a wide variety of contexts including pattern recognition, images understanding and machine learning. The concept of reduction of the decision table based on the rough set is very useful for feature selection. In this paper, a genetic algorithm based approach is presented to search the relative reduct decision table of the rough set. This approach has the ability to accommodate multiple criteria such as accuracy and cost of classification into the feature selection process and finds the effective feature subset for texture classification . On the basis of the effective feature subset selected, this paper presents a method to extract the objects which are higher than their surroundings, such as trees or forest, in the color aerial images. The experiments results show that the feature subset selected and the method of the object extraction presented in this paper are practical and effective.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rough set is a new mathematical approach to imprecision, vagueness and uncertainty. The concept of reduction of the decision table based on the rough sets is very useful for feature selection. The paper describes an application of rough sets method to feature selection and reduction in texture images recognition. The methods applied include continuous data discretization based on Fuzzy c-means and, and rough set method for feature selection and reduction. The trees extractions in the aerial images were applied. The experiments show that the methods presented in this paper are practical and effective.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Micro-electro-mechanical system (MEMS) technology offers sensors with lower cost, smaller size, lower power consumption. In this paper, a kind of low cost motion-sensing system based MEMS sensors is developed. The objective of the design is low cost, small volume and light weight in order to be used in many fields. The constituting principle of the system is described. Algorithms and hardware of the system are researched. And the definition of coordinate, calculation of pose angle, transform of acceleration and calculation of the velocities and displacement of the moving object are presented with corresponding mathematics model and algorithms. The experiments are carried out in principle and results are given. It is proved that the low cost motion-sensing system is effective and correct.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study contributes to work in baggage handling system (BHS) control, specifically dynamic bag routing. Although studies in BHS agent-based control have examined the need for intelligent control, but there has not been an effort to explore the dynamic routing problem. As such, this study provides additional insight into how agents can learn to route in a BHS. This study describes a BHS status-based routing algorithm that applies learning methods to select criteria based on routing decisions. Although numerous studies have identified the need for dynamic routing, little analytic attention has been paid to intelligent agents for learning routing tables rather than manual creation of routing rules. We address this issue by demonstrating the ability of agents to learn how to route based on bag status, a robust method that is able to function in a variety of different BHS designs.